An Emerging New Paradigm in Opioid Withdrawal: A Critical Role for Glia-Neuron Signaling in the Periaqueductal Gray
نویسندگان
چکیده
The chronic use of opiates (i.e., narcotics such as the natural derivatives of opium including morphine or codeine) or opioids (i.e., semisynthetic derivatives of opium and other molecules that activate opioid receptors) induces dependence, which is associated with various specific behavioral and somatic signs after their withdrawal or after the administration of an opioid antagonist. Among the brain regions implicated in opiate dependence and withdrawal, the periaqueductal gray area (PAG) appears to be critical in regulating the complex signs and symptoms of opioid withdrawal. Numerous neurochemical mechanisms in the PAG have been identified that may contribute to the opioid withdrawal syndrome. Accumulating evidence suggests that glial activation leading to the release of proinflammatory molecules acting on neurons is important in the complex syndrome of opioid dependence and withdrawal. This paper focuses on the recent advances in our understanding of the vital role that glia-neuron interactions play in opioid dependence and withdrawal within the PAG. We summarize those neurochemical mechanisms associated with opioid withdrawal including the recently defined importance of TNFα release from activated glial cells that communicate with TNF receptors on PAG neurons.
منابع مشابه
P 79: Neuroinflammation: A Common Phenomenon between Chronic Pain and Opioids
Chronic pain is a prevalent and debilitating condition, conveying immense human burden. Suffering from chronic pain is not only caused by painful symptomatology, but also through a wide range of psychopathological and physical consequences, including depression and anxiety disorders, impaired sleep and cognition, cardiovascular morbidity and impaired sexual function, all contributing to diminis...
متن کاملGABA Transporter Currents Activated by Protein Kinase A Excite Midbrain Neurons during Opioid Withdrawal
Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was medi...
متن کاملInjections of an opioid antagonist into the locus coeruleus and periaqueductal gray but not the amygdala precipitates morphine withdrawal in the 7-day-old rat.
Opiate withdrawal behaviors in the infant differ from those of the adult. The neural circuitry underlying opioid withdrawal in the adult rat is well defined and includes the locus coeruleus (LC) and periaqueductal gray (PAG), with a minor role of the amygdala. Because the different behaviors that constitute the infant syndrome may be mediated by different neural circuits, we tested the hypothes...
متن کاملMicroinjection of calcitonin in midbrain periaqueductal gray attenuates hyperalgesia in a chronic constriction injury rat model
Objective(s): As heat, pain is one of the most common clinical symptoms. Generally, calcitonin (CT) is prescribed as an analgesic agent for the treatment of pain, especially for the pain caused by osteoporosis or primary and metastatic bone tumor. However, the detailed mechanism remains unknown.Materials and Methods: In this study, chronic constriction injury (CCI) rat model was created, and ho...
متن کاملAntinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdala-periaqueductal gray pathway.
The central nucleus of amygdala (CeA) plays an important role in pain regulation. Calcitonin gene-related peptide (CGRP)-like immunoreactive fibers and CGRP receptors are distributed densely in CeA. The present study was performed to elucidate the role of CGRP in nociceptive regulation in the CeA of rats. Intra-CeA injection of CGRP induced dose-dependent increases in the hind-paw withdrawal la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012